Dr. Yugal   Kumar

Dr. Yugal Kumar

Assistant Professor
Jaypee University of Information Technology, India


Highest Degree
Ph.D. in Computer Science and Engineering from Birla Institute of Technology, India

Share this Profile

Area of Interest:

Computer Sciences
100%
Information Technology
62%
Clustering
90%
Data Mining
75%
Optimization
55%

Selected Publications

  1. Kumar, Yugal and G. Sahoo, 2016. Improved Cat Swarm Optimization Algorithm based on Opposition based learning and Cauchy Operator for Clustering. J. Inf. Process. Syst., .
  2. Kumar, Yugal and G. Sahoo, 2016. Gaussian cat swarm optimization algorithm based on monte carlo method for data clustering. Int. J. Comput. Sci. Eng., 9: 117-141.
  3. Kumar, Yugal and G. Sahoo, 2016. A Hybridize Approach for Data Clustering Based on Cat Swarm Optimization. Int. J. Inf. Commun. Technol., 10: 9-28.
  4. Kumar, Y., S. Gupta, D. Kumar and G. Sahoo, 2016. A Clustering Approach Based on Charged Particles. In: Optimization Algorithms-Methods and Applications, Baskan, O. (Ed.). Chapter 11, InTech Publishers, Croatia, ISBN 978-953-51-2593-8, pp: 245-263.
  5. Kumar, Y., S. Gupta and G. Sahoo, 2016. A Clustering Approach Based on Charged Particles. Int. J. Software Eng. Appl., 10: 9-28.
    Direct Link  |  
  6. Gambhir, S., S.K. Malik and Y. Kumar, 2016. Role of Soft Computing Approaches in HealthCare Domain: A Mini Review. J. Med. Syst., 40: 287-307.
    Direct Link  |  
  7. Dahiya, N., S. Dalal, S. Khatri and Y. Kumar, 2016. Cat swarm optimization: Applications and experimental illustrations to data clustering. Int. J. Control Theory Applic., 9: 759-765.
    Direct Link  |  
  8. Kumar, Y., A. Jakhar and R. Yadav, 2015. Analysis of Routing Protocols for Vehicular Ad-hoc Network. Scholar Press, Germany, ISBN-13: 978-3-639-51910-5, Pages: 80.
  9. Kumar, Y. and G. Sahoo, 2015. Hybridization of magnetic charge system search and particle swarm optimization for efficient data clustering using neighborhood search strategy. Soft Comput., 19: 3621-3645.
    Direct Link  |  
  10. Kumar, Y. and G. Sahoo, 2015. Application of Charge System Search Algorithm for Data Clustering. In: Handbook of Research on Emerging Perspectives in Intelligent Pattern Recognition, Analysis and Image Processing, Kamila, N.K. (Ed.). Chapter 18, IGI Global Publisher, USA., ISBN-13: 9781466686540, pp: 383-399.
  11. Kumar, Y. and G. Sahoo, 2015. A hybrid data clustering approach based on improved cat swarm optimization and K-harmonic mean algorithm. AI Commun., 28: 751-764.
    Direct Link  |  
  12. Sahoo, A.J. and Y. Kumar, 2014. Seminal quality prediction using data mining methods. Technol. Health Care, 22: 531-545.
    Direct Link  |  
  13. Kumar, Yugal and A.J. Sahoo, 2014. A Modified TLBO Method for Data Clustering. Adv. Intell. Syst. Comput., 264: 429-437.
  14. Kumar, Y. and G. Sahoo, 2014. An Initialization Method for K-Means Algorithm Using Binary Search Technique. Int. J. Soft Comput., 9: 131-137.
    Direct Link  |  
  15. Kumar, Y. and G. Sahoo, 2014. A review on gravitational search algorithm and its applications to data clustering and classification. Int. J. Intell. Syst. Appl., 6: 79-93.
    CrossRef  |  Direct Link  |  
  16. Kumar, Y. and G. Sahoo, 2014. A new initialization method to originate initial cluster centers for K-Means algorithm. Int. J. Adv. Sci. Technol., 62: 43-54.
    Direct Link  |  
  17. Kumar, Y. and G. Sahoo, 2014. A hybrid data clustering approach based on cat swarm optimization and K-harmonic mean algorithm. J. Inform. Comput. Sci., 9: 196-209.
    Direct Link  |  
  18. Kumar, Y. and G. Sahoo, 2014. A charged system search approach for data clustering. Prog. Artif. Intell., 2: 153-166.
    Direct Link  |  
  19. Kumar, Y. and G. Sahoo, 2014. A chaotic charged system search approach for data clustering. Inf., 38: 249-261.
    Direct Link  |  
  20. Kumar, Y. and G. Sahoo, 2013. Prediction of different types of liver diseases using rule based classification model. Technol. Health Care, 21: 417-432.
    Direct Link  |  
  21. Yadav, G., Y. Kumar and G. Sahoo, 2012. Role of the Computational Intelligence in Drugs Discovery and Design: Introduction, Techniques and Software. Int. J. Comput. Appl., 51: 7-18.
    Direct Link  |  
  22. Rana, R.S, K. Yugal and K. Dharmander, 2012. Method and Technique of Digitized Land Record Verification using Android Application. IJCST, 3: 50-51.
  23. Kumar, Yugal and G. Sahoo, 2012. Analysis of Parametric & Non Parametric Classifiers for Classification Technique using WEKA. Int. J. Inf. Technol. Comput. Sci., 4: 43-49.
    Direct Link  |  
  24. Kumar, Yugal and D. Kumar, 2012. Analysis of classification algorithms/Technique in Data Mining using Weka. Int. J. Sci. Eng. Technol., 2: 1-4.
  25. Kumar, Y., P. Kumar and A. Kadian, 2011. A survey on routing mechanism and techniques in vehicle to vehicle communication (VANET). Int. J. Comput. Sci. Eng. Surv., 2: 135-144.
    Direct Link  |  
  26. Kumar, Y. and D. Kumar, 2011. Parametric Analysis of Nature Inspired Optimization Techniques. Int. J. Comput. Appl., 32: 42-49.
    Direct Link  |  
  27. Geeta, Y., K. Yugal and G. Sahoo, 2011. Predication of Parkinson`s disease-using data mining methods: a comparative analysis of tree, statistical, and support vector machine classifiers. Indian J. Med. Sci., 65: 231-242.
    Direct Link  |  
  28. Kumar, Yugal, S. Yadav and R. Yadav, 2010. Fuzzy set in business process management as reference model. Global J. Comput. Sci. Technol., 10: 24-27.
    Direct Link  |