Dr. Shardendu K. Singh
My Social Links

Dr. Shardendu K. Singh

Research Scientist
University of Maryland, USA

Highest Degree
Ph.D. in Crop Physiology from Mississippi State University, USA

Share this Profile

Area of Interest:

Plant and Soil Sciences
Crop Physiology
Plant Physiology

Research Publications in Numbers


Selected Publications

  1. Singh, S.K., V.R. Reddy, D.H. Fleisher and D.J. Timlin, 2017. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. Photosynthetica, 55: 421-433.
    CrossRef  |  Direct Link  |  
  2. Xu, G., S.K. Singh, V.R. Reddy, J.Y. Barnaby, R.C. Sicher and T. Li, 2016. Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth and seed yield. J. Plant Physiol., 205: 22-32.
    CrossRef  |  Direct Link  |  
  3. Xu, G., S.K. Singh, V.R. Reddy, J.Y. Barnaby, R.C. Sicher and T. Li, 2016. Seed components as affected by sub- and super-optimum temperature under ambient and elevated CO2 during seed filling stages in soybean. Plant Physiol. Biochem., 108: 313-322.
  4. Singh, S.K., V.R. Reddy, M.P. Sharma and R. Agnihotri, 2016. Dynamics of Plant Nutrients, Utilization and Uptake and Soil Microbial Community in Crops under Ambient and Elevated Carbon Dioxide. In: Nutrient Use Efficiency: From Basics to Advances, Rakshit, A., H.B. Singh and A. Sen (Eds.). Springer, New Delhi, ISBN: 978-81-322-2169-2, pp: 381-399.
  5. Singh, S.K., J.Y. Barnaby, V.R. Reddy and R.C. Sicher, 2016. Varying response of the concentration and yield of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein and oil to phosphorus starvation and CO2 enrichment. Front. Plant Sci., Vol. 7. 10.3389/fpls.2016.01967.
    CrossRef  |  Direct Link  |  
  6. Singh, S.K. and V.R. Reddy, 2016. Methods of mesophyll conductance estimation: Its impact on key biochemical parameters and photosynthetic limitations in phosphorus‐stressed soybean across CO2. Physiol. Plant., 157: 234-254.
    CrossRef  |  Direct Link  |  
  7. Dhanapal, A.P., J.D.Ray, S.K. Singh, V. Hoyos-Villegas, J.R. Smith, L.C. Purcell and F.B. Fritschi, 2016. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol., Vol. 16. 10.1186/s12870-016-0861-x.
    CrossRef  |  Direct Link  |  
  8. Singh, S.K. and V.R. Reddy, 2015. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical phosphorus concentration. J. Photochem. Photobiol. B: Biol., 151: 276-284.
  9. Ray, J.D., A.P. Dhanapal, S.K. Singh, V. Hoyos-Villegas and J.R. Smith et al., 2015. Genome-wide association study of ureide concentration in diverse maturity group IV soybean [Glycine max (L.) Merr.] accessions. G3: Genes Genomes Genetics, Vol. 5. 10.1534/g3.115.021774.
    CrossRef  |  Direct Link  |  
  10. Dhanapal, A.P., J.D. Ray, S.K. Singh, V. Hoyos-Villegas and J.R. Smith et al., 2015. Genome-wide association analysis of diverse soybean genotypes reveals novel markers for nitrogen traits. Plant Genome, Vol. 8. 10.3835/plantgenome2014.11.0086.
    CrossRef  |  Direct Link  |  
  11. Dhanapal, A.P., J.D. Ray, S.K. Singh, V. Hoyos-Villegas and J.R. Smith et al., 2015. Association mapping of total carotenoids in diverse soybean genotypes based on leaf extracts and high-throughput canopy spectral reflectance measurements. PloS One, Vol. 10. 10.1371/journal.pone.0137213.
    CrossRef  |  Direct Link  |  
  12. Dhanapal, A.P., J.D. Ray, S.K. Singh, H. Villegas-Hoyos and J.R. Smith et al., 2015. Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor. Applied Genet., 128: 73-91.
    CrossRef  |  Direct Link  |  
  13. Villegas-Hoyos, H., J.H. Houx, S.K. Singh and F.B. Fritschi, 2014. Ground-based digital imaging as a tool to assess soybean growth and yield. Crop Sci., 54: 1756-1768.
    CrossRef  |  Direct Link  |  
  14. Singh, S.K., V.R. Reddy, D.H. Fleisher and D.J. Timlin, 2014. Growth, nutrient dynamics and efficiency responses to carbon dioxide and phosphorus nutrition in soybean. J. Plant Interact., 9: 838-849.
    CrossRef  |  Direct Link  |  
  15. Singh, S.K., K.R. Reddy, V.R. Reddy and W. Gao, 2014. Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction. Photosynthetica, 52: 262-271.
    CrossRef  |  Direct Link  |  
  16. Singh, S.K. and V.R. Reddy, 2014. Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis and nutrient efficiency of cotton. J. Plant Nutr. Soil Sci., 177: 892-902.
  17. Singh, S.K., J.D. Ray, J.R. Smith, H. Villegas-Hoyos and F.B. Felix, 2013. Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features. Field Crop Res., 149: 20-32.
    CrossRef  |  Direct Link  |  
  18. Singh, S.K., G.B. Badgujar, V.R. Reddy, D.H. Fleisher and D.J. Timlin, 2013. Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J. Agron. Crop Sci., 199: 436-448.
    CrossRef  |  Direct Link  |  
  19. Singh, S.K., G. Badgujar, V.R. Reddy, D.H. Fleisher and J.A. Bunce, 2013. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J. Plant Physiol., 170: 801-813.
    CrossRef  |  Direct Link  |  
  20. Reddy, K.R., S.K. Singh, S. Koti, V.G. Kakani, D. Zhao, W. Gao and V.R. Reddy, 2013. Quantifying the effects of corn growth and physiological responses to ultraviolet-B radiation for modeling. Agron. J., 105: 1367-1377.
  21. Singh, S.K., V. Hoyos-Villegas, J.H. Houx and F.B. Fritschi, 2012. Influence of artificially restricted rooting depth on soybean yield and seed quality. Agric. Water Manage., 105: 38-47.
    CrossRef  |  Direct Link  |  
  22. Singh, S.K. and K.R. Reddy, 2011. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J. Photochem. Photobiol. B: Biol., 104: 40-50.
    CrossRef  |  Direct Link  |  
  23. Singh, S.K., V.G. Kakani, G.K. Surabhi and K.R. Reddy, 2010. Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. J. Photochem. Photobiol. B: Biol., 100: 135-146.
    CrossRef  |  Direct Link  |  
  24. Surabhi, G.K., K.R. Reddy and S.K. Singh, 2009. Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation. Environ. Exp. Bot., 66: 160-171.
    CrossRef  |  Direct Link  |  
  25. Reddy, K.R., P.V. Prasad and S.K. Singh, 2009. Effect of Ultraviolet-B Radiation and its Interactions with Climate Change Factors on Agricultural Crop Growth and Yield. In: UV Radiation in Global Change: Measurements, Modeling and Effects on Ecosystems, Gao, W., D.L. Schmoldt and J.R. Slusser (Eds.). Springer-Verlag, New York, pp: 395-436.
  26. Singh, S.K., V.G. Kakani, D. Brand, B. Baldwin and K.R. Reddy, 2008. Assessment of cold and heat tolerance of winter‐grown canola (Brassica napus L.) cultivars by pollen‐based parameters. J. Agron. Crop Sci., 194: 225-236.
    CrossRef  |  Direct Link  |  
  27. Singh, S.K., K.R. Reddy, G.K. Surabhi and W. Gao, 2008. Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. J. Photochem. Photobiol. B: Biol., 93: 71-81.
    CrossRef  |  Direct Link  |