Dr. Madi Reddy Jaipal Reddy

Dr. Madi Reddy Jaipal Reddy

Associate Professor
Jawaharlal Nehru Technological University, India


Highest Degree
Ph.D. in Materials Science from Jawaharlal Nehru Technological University, Hyderabad, India

Share this Profile

Biography

M. Jaipal Reddy did his M. Sc., in 1988 and completed Ph. D. in Physics from Osmania University in 1997. He is having 24 years of Research/ Teaching experience. He was awarded various research fellowships by UGC, CSIR Government of India and National Science Council, Government of Taiwan. He delivered number of oral presentations and plenary invited lectures in various conferences. He has Published 61 papers in reputed International Journals. His research fields of interest are Nano Materials synthesis and Characterization, Solid Ion conducting materials synthesis, characterization, and application to electrochemical devices such as batteries, Nano capacitors, Fuel cells, Solar cells etc.

Area of Interest:

Physical Science Engineering
100%
Material Science
62%
Nano Technology
90%
Condensed Matter Physics
75%
Electrochemistry
55%

Selected Publications

  1. Reddy, M.J., M.R. Reddy, A.R. Subrahmanyam, M.M. Reddy and A. Raor, 2018. Effect of LiClO4 concentration on structural, morphological and thermal properties of PMMA and PEO polymer blends. Asian J. Res. Chem., 11: 463-466.
    CrossRef  |  Direct Link  |  

  2. Janardhan, E., M.M. Reddy, P.V. Reddy and M.J. Reddy, 2018. Synthesis of SnO nanopatricles-a hydrothermal approach. World J. Nano Sci. Eng., 8: 33-37.
    CrossRef  |  Direct Link  |  

  3. Janardhan, E., M.M. Reddy, P.V. Reddy and M.J. Reddy, 2018. Synthesis of CuO nanoparticles-a chemical reduction protocol. J. Ultra Scientist Phys. Sci., 30: 320-325.
    CrossRef  |  Direct Link  |  

  4. Sangeetha, M., A. Mallikarjun, M.J. Reddy and J.S. Kumar, 2017. SEM, XRD and electrical conductivity studies of PVDF-HFP-LiBF4-EC plasticized gel polymer electrolyte. AIP Conf. Proc., Vol. 1859, No. 1. 10.1063/1.4990217.
    CrossRef  |  Direct Link  |  

  5. Reddy, M.R., M.J. Reddy, A.R. Subrahmanyam and J.S. Kumar, 2017. Optical and conductivity studies of polymer blend thin films of PMMA and PEO. Int. J. Emerg. Technol. Adv. Eng., 7: 175-178.
    Direct Link  |  

  6. Reddy, M.R., M.J. Reddy and A.R. Subrahmanyam, 2017. Structural, thermal and optical properties of PMMA, PEO and PMMA/PEO/LiClO4 polymer electrolyte blends. Mater. Sci. Res. India, 14: 123-127.
    CrossRef  |  Direct Link  |  

  7. Ramesh, C., M.M. Reddy, M.J. Reddy and J.S. Kumar, 2017. Effect of Mg+2 ion on PVC-PEG blend polymer electrolyte system. Int. J. Emerg. Technol. Adv. Eng., 7: 502-507.
    Direct Link  |  

  8. Mahendrakar, S., M. Anna, J.S. Kumar and M.J. Reddy, 2017. Structural, morphological and electrical studies of plasticized polymer-salt electrolyte membrane and application to lithium ion batteries. Int. J. Applied Chem., 13: 477-490.
    Direct Link  |  

  9. Mahendrakar, S., M. Anna, J.S. Kumar and M.J. Reddy, 2017. Electrical and FTIR studies of plasticized polymer-salt electrolyte membrane and application to lithium ion batteries. Int. J. Applied Chem., 13: 197-210.
    Direct Link  |  

  10. Janardhan, E., M.M. Reddy, P.V. Reddy and M.J. Reddy, 2017. Synthesis of ZnO nanoparticles-a hydrothermal protocol. Eur. J. Applied Sci., 9: 312-314.
    Direct Link  |  

  11. Reddy, M.R., A.R. Subrahmanyam, M.M. Reddy, J.S. Kumar, V. Kamalaker and M.J. Reddy, 2016. X-RD, SEM, FT-IR, DSC studies of polymer blend films of PMMA and PEO. Mater. Today: Proc., 3: 3713-3718.
    CrossRef  |  Direct Link  |  

  12. Mahendrakar, S., M. Anna and M.J. Reddy, 2015. Structural morphological and FTIR of PVDF-HFP and lithium tetrafluoroborate salt as polymer electrolyte membrane in lithium ion batteries. Int. J. ChemTech Res., 8: 319-328.
    Direct Link  |  

  13. Ramesh, C.H., M.J. Reddy, J.S. Kumar and K.N. Reddy, 2014. Structural and transport properties of PVC blend PEG doped with Mg(ClO4)2 solid polymer electrolyte. AIP Conf. Proc., Vol. 1591, No. 1. 10.1063/1.4872969.
    CrossRef  |  Direct Link  |  

  14. Reddy, M.J., S.M. Reddy, C. Ramesh and K.N. Reddy, 2012. FTIR, DSC and optical studies of PVA doped with GdF3 solid polymer films. IUP J. Phys., 1: 48-58.
    Direct Link  |  

  15. Reddy, M.J., D.S. Reddy, C. Ramesh, J.S. Kumar and U.V.S. Rao, 2011. Proton conducting solid polymer electrolyte of PEO complexed with Tetra methyl ammonium chloride. IUP J. Phys., 4: 16-24.
    Direct Link  |  

  16. Reddy, M.J., C. Ramesh, J.S. Kumar and U.V.S. Rao, 2011. Conductivity study of PEO complexed with Mg2+ borate glass polymer electrolyte-its application as electrochemical cell. Int. J. Applied Eng. Res., 2: 147-156.
    Direct Link  |  

  17. Reddy, M.J., 2010. The effect of Fe3O4 nanoparticles in PEO: Mg(ClO4)2 solid polymer electrolyte. IUP J. Phys., 3: 25-32.
    Direct Link  |  

  18. Reddy, M.J. and U.V.S. Rao, 2010. Ionic transport study of PEO: Mg(ClO4) 2 electrolyte and its application to electrochemical cell. Int. J. Mater. Sci., 5: 825-829.

  19. Kumar, J.S., K.V. Kumar, A.R. Subrahmanyam and M.J. Reddy, 2007. Conductivity study of Polyethylene Oxide (PEO) complexed with sodium bicarbonate. Mater. Sci., 42: 5752-5755.
    CrossRef  |  

  20. Reddya, M.J., P.P. Chub, J.S. Kumara and U.V.S. Rao, 2006. Inhibited crystallization and its effect on conductivity in nano Fe composite PEO solid electrolytes. Power Sources, 161: 535-540.
    CrossRef  |  

  21. Reddya, M.J., J.S. Kumara, U.V.S. Raoa and P.P. Chu, 2006. Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte. Solid State Ionics, 177: 253-256.
    CrossRef  |  

  22. Reddy, M.J., P.P. Chu and U.V.S. Rao, 2006. Study of multiple interactions in mesoporous composite PEO electrolyte. J. Power Sources, 158: 614-619.
    CrossRef  |  

  23. Kumara, S., A.R. Subrahmanyam, M.J. Reddya and U.V.S. Rao, 2006. Preparation and study of properties of polymer electrolyte system (PEO + NaClO3). Mater. Lett., 60: 3346-3349.
    CrossRef  |  

  24. Kumar, J.S., M.J. Reddy and U.V.S. Rao, 2006. Ion transport and battery studies of a new (PVP + KIO3) polymer electrolyte system. Mater. Sci. Lett., 41: 6171-6173.
    CrossRef  |  

  25. Shen, Y.J., M.J. Reddy and P.P. Chu, 2004. Porous PVDF with LiClO4 complex as solid and wet polymer electrolyte. Solid State Ionics, 175: 747-750.
    CrossRef  |  

  26. Reddy, M.J. and P.P. Chu, 2004. Sm2O3-Polymer PEO Hybrid Solid Polymer Electrolye. In: Inorganic Materials: Recent Advances, Bahadur, D., S. Vitta and O. Prakash (Eds.). Narosa Publishing House, New Delhi, India, ISBN-13: 9788173195105, pp: 278-281.

  27. Reddy, M.J. and P.P. Chu, 2004. 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite PEO electrolyte. J. Power Sources, 135: 1-8.
    Direct Link  |  

  28. Chu, P.P. and M.J. Reddy, 2004. Nano Composite of polymer PEO and Li+ with mesoporous structured SiO2. In: Inorganic Materials Recent Advances, Bahadur, D., S. Vitta and O. Prakash (Eds.). Narosa Publishing House, New Delhi, India, pp: 282-285.

  29. Chu, P.P. M.J. Reddy and J. Tsai, 2004. Structural and transport characteristics of PEO/Phenolic blend solid polymer electrolyte. Polym. Sci. Part-B: Polym. Phys., 42: 3866-3875.
    CrossRef  |  

  30. Chiang, C.Y., M.J. Reddy and P.P. Chu, 2004. Nano-tube TiO2 composite PVdF: LiPF6 solid membranes. Solid State Ionics, 175: 631-635.
    Direct Link  |  

  31. Chu, P.P., M.J. Reddy and H.M. Kao, 2003. Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid. State Ionics, 156: 141-153.
    CrossRef  |  

  32. Chu, P.P. and R.M. Jaipal, 2003. Sm2O3 composite PEO solid polymer electrolyte. J. Power Sources, 115: 288-294.
    CrossRef  |  

  33. Chiang, C.Y., Y.J. Shen, M.J. Reddy and P.P. Chu, 2003. Complexation of poly(vinylidene fluoride): LiPF6 solid polymer electrolyte with enhanced ion conduction in wet form. J. Power Sources, 123: 222-229.
    CrossRef  |  

  34. Reddy, M.J. and P.P. Chu, 2002. Mesoporous composite solid polymer electrolyte. Proceedings of the 8th Asian Conference on Solid State Ionics: Trends in the New Millennium, December 15-19, 2002, Langkawi, Malaysia, pp: 393-400.
    CrossRef  |  

  35. Reddy, M.J. and P.P. Chu, 2002. Ion pair formation and its effect in PEO: Mg solid polymer electrolyte system. J. Power Sources, 109: 340-346.
    CrossRef  |  

  36. Reddy, M.J. and P.P. Chu, 2002. Effect of Mg2+ on PEO morphology and conductivity. Solid State Ionics, 149: 115-123.
    CrossRef  |  

  37. Reddy M.J. and P.P. Chu, 2002. Optical microscopy and conductivity of poly (ethylene oxide) complexed with KI salt. Electrochim. Acta, 47: 1189-1196.
    CrossRef  |  

  38. Sreekanth, T., M.J. Reddy and U.V.S. Rao, 2001. Polymer electrolyte system based on (PEO:KBrO3)-its application as an electrochemical cell. J. Power Sources, 93: 268-272.
    CrossRef  |  

  39. Reddy, M.J., P.P. Chu, T. Sreekanth and U.V.S. Rao, 2001. PEO: KIO3 polymer electrolyte system-its application to solid state electrochemical cell. Mater. Sci. Electron., 12: 153-156.
    CrossRef  |  

  40. Kumar, K.N., T. Sreekanth, M.J. Reddy and U.V.S. Rao, 2001. Study of transport and electrochemical cell characteristics of PVP:NaClO3 polymer electrolyte system. J. Power Sources, 101: 130-133.
    CrossRef  |  

  41. Reddy, M.J., T. Sreekanth, M. Chandrashekar and U.V.S. Rao, 2000. Ion transport and electrochemical cell characteristic studies of a new (PVP+NaNO3) polymer electrolyte system. J. Mater. Sci., 35: 2841-2845.
    CrossRef  |  

  42. Reddy, D.S., M.J. Reddy and U.V.S. Rao, 2000. Proton conductor based on poly (ethylene oxide) complexed with tetra-methyle-ammonium bromide. Mater. Sci. Eng. B., 78: 59-62.
    CrossRef  |  

  43. Sreekantha, T., M.J. Reddya, S. Subramanyamb and U.V.S. Rao, 1999. Ion conducting polymer electrolyte films based on (PEO+KNO3) system and its application as an electrochemical cell. Mater. Sci. Eng. B., 64: 107-112.
    CrossRef  |  

  44. Sreekanth, T., M.J. Reddy, S. Ramalingaiah and U.V.S. Rao, 1999. Ion-conducting polymer electrolyte based on Poly (ethylene oxide) complexed with NaNO3 salt-application as an electrochemical cell. J. Power Sources, 79: 105-110.
    CrossRef  |  

  45. Reddy, M.J., T. Sreekanth and U.V.S. Rao, 1999. Study of the plasticizer effect on a (PEO+NaYF4) polymer electrolyte and its use in an electrochemical cell. Solid State Ionics, 126: 55-63.
    CrossRef  |  

  46. Reddy, M.J., T. Sreekanth and U.V.S. Rao, 1998. Conductivity and parametric studies of a (PEO+(glass) (15Na2O-15NaF-70 B2-O3) cell. J. Power Sources, 76: 30-35.
    CrossRef  |  

  47. Reddy, M.J. and U.V.S. Rao, 1998. Transport studies of Poly (ethylene oxide)-based polymer electrolyte complexed with sodium yttrium fluoride. J. Mat. Sci. Lett., 17: 1613-1615.
    CrossRef  |  

  48. Ramalingaiah, S., D.S. Reddy, M.J. Reddy, E. Laxminarsaiah and U.V.S. Rao, 1996. Conductivity and discharge characteristics studies of novel polymer electrolyte based on PEO complexed with Mg(NO3)2. Mater. Lett., 29: 285-289.
    CrossRef  |  

  49. Subba, R.U.V., R.S. Sreepathi, R.M. Jaipal and N.E. Laxmi, 1995. Development of electrochemical cells base on (PEO + NaYF4) and (PEO + KYF4) polymer electrolytes. Mater. Sci. Eng. B, 33: 173-177.
    CrossRef  |  

  50. Reddy, M.J., S.S. Rao, E. Laxminarsaiah and U.V.S. Rao, 1995. Study of a thin film electrochemical cell based on (PVP+AgNO3 ) electrolyte. Solid State Ionics, 80: 93-98.
    CrossRef  |  

  51. Reddy, M.J., S.S. Rao, E. Laxminarsaiah and U.V.S. Rao, 1995. New PEO-based thin film polymer electrolyte complexed with KYF4 and its application as an electrochemical cell. J. Mat. Sci. Lett., 14: 1129-1131.
    CrossRef  |  

  52. Jaipal, R.M., R.D. Srinivas, R.S. Sreepathi and R.U.V. Subba, 1995. Ionic transport and electrochemical cell characteristic studies of a new polymer electrolyte (PEO + Glass). Syst. Mater. Lett., 23: 129-130.
    CrossRef  |  

  53. Raoa, S.S., M.J. Reddya, K. Reddya and U.VS. Rao, 1994. A new Na+ ion conducting polymer electrolyte based on (PEO + NaYF4) and its use as an electrochemical cell. Solid State Ionics, 74: 225-228.
    CrossRef  |