Dr. Hazi Mohammad Azamathulla
My Social Links

Dr. Hazi Mohammad Azamathulla

Professor
UNIVERSITY OF THE WEST INDIES


Highest Degree
Ph.D. in Civil Engineering from Indian Institute of Technology, India

Share this Profile

Biography

Dr. Hazi Mohammad Azamathulla is currently working as Senior Lecturer at Universiti Sains Malaysia, Malaysia, Malaysia. He obtained his Ph.D. in Civil Engineering from IIT Bombay, India in 2006. His field of research interest related to Water Resources Engineering, Hydraulics, Physical Hydraulic Model studies and Hydroinformatics. He is having 16 years experience in Industry, Teaching & Research. He is also member of editorial board in number of journals. Dr. Hazi Mohammad received number of honors includes Journal of Hydroinformatics Outstanding Reviewer prize, Certificate of outstanding contribution in Reviewing Applied Soft Computing Journal manuscripts, Marquis Who is Who, International Directory, University Hall of Fame Reward, and Merit Reward. He is professional and life member of Indian Society for Hydraulics, Associate Member Institution of Engineers (India), and Member of International Flood Network (IFNet) Japan, International Association of Hydrological Sciences (IAHS), American Society of Civil Engineers (ASCE), International Association of Engineers, World Academy of Science and Engineering Technology (WASET), and Malaysian National Committee on Irrigation and Drainage. He has published (3) book chapters, (84) articles in journals, (20) papers in national and international conferences contributed as author/co-author. He is also serving as reviewer in several journals. He supervised 3 PhD, 4 Masters, and 9 undergraduate students, 3 PhD and 2 MSc currently in his supervision.

Area of Interest:

Engineering
100%
Hydraulic Engineering
62%
Civil Engineering
90%
Hydraulic Structures
75%
Hydroinformatics
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Azamathulla, H.M., 2015. Discussion of Orifice spillway aerator: Hydraulic design by V.V. Bhosekar, V. Jothiprakash and P.B. Deolalikar. J. Hydraul. Eng., Vol. 141. 10.1061/(ASCE)HY.1943-7900.0000932.
    CrossRef  |  Direct Link  |  
  2. Zahiri, A., X. Tang and H.M. Azamathulla, 2014. Mathematical modeling of flow discharge over compound sharp-crested weirs. J. Hydro-Environ. Res., 8: 194-199.
    CrossRef  |  Direct Link  |  
  3. Zahiri, A. and H.M. Azamathulla, 2014. Comparison between Linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Comput. Applic., 24: 413-420.
    CrossRef  |  Direct Link  |  
  4. Yusof, M.F., H.M. Azamathulla and R. Abdullah, 2014. Prediction of soil erodibility factor for peninsular malaysia soil series using ANN. Neural Comput. Applic., 24: 383-389.
    CrossRef  |  Direct Link  |  
  5. Samadi, M., E. Jabbari and H.M. Azamathulla, 2014. Assessment of M5' model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Comput. Applic., 24: 357-366.
    CrossRef  |  Direct Link  |  
  6. Najafzadeh, M., G.A. Barani and H.M. Azamathulla, 2014. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput. Applic., 24: 629-635.
    CrossRef  |  Direct Link  |  
  7. Madadi, M.R., H.M. Azamathulla and M. Yakhkeshi, 2014. Application of Google earth to investigate the change of flood inundation area due to flood detention dam. Earth Sci. Inform., (In Press) 10.1007/s12145-014-0197-8.
    CrossRef  |  Direct Link  |  
  8. Khan, M., H.M. Azamathulla and M. Tufail, 2014. Closure to discussion Bridge pier scour by gene expression programming by C. Neil and D. Andres. Water Manage., 167: 368-369.
  9. Azamathulla, H.M., M.A.M. Yusoff and Z.A. Hasan, 2014. Scour below submerged skewed pipeline. J. Hydrol., 509: 615-620.
    CrossRef  |  Direct Link  |  
  10. Azamathulla, H.M. and Z. Ahmad, 2014. Closure to estimation of critical velocity for slurry transport through pipeline using adaptive Neuro-fuzzy interference system and Gene-expression programming by H. Md. Azamathulla and Z. Ahmad. J. Pipeline Syst. Eng. Practice, Vol. 6. .
    Direct Link  |  
  11. Zahiri, A., H.M. Azamathulla and S. Bagheri, 2013. Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. J. Hydrol., 480: 162-166.
    CrossRef  |  Direct Link  |  
  12. Zahabiyoun, B., M.R. Goodarzi, A.R.M. Bavani and H.M. Azamathulla, 2013. Assessment of climate change impact on the Gharesou river basin using SWAT hydrological model. Clean-Soil Air Water, 41: 601-609.
    CrossRef  |  Direct Link  |  
  13. Salamasi, F. and H.M. Azamathulla, 2013. Determination of optimum relaxation coefficient using finite difference method for groundwater flow. Arabian J. Geosci., 6: 3409-3415.
    CrossRef  |  Direct Link  |  
  14. Najafzadeh, M., G.A. Barani and H.M. Azamathulla, 2013. GMDH to predict scour depth around a pier in cohesive soils. Applied Ocean Res., 40: 35-41.
    CrossRef  |  Direct Link  |  
  15. Najafzadeh, M. and H.M. Azamathulla, 2013. Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J. Comput. Civil Eng. 10.1061/(ASCE)CP.1943-5487.0000376.
    CrossRef  |  Direct Link  |  
  16. Najafzadeh, M. and H.M. Azamathulla, 2013. Group method of data handling to predict scour depth around bridge piers. Neural Comput. Applic., 23: 2107-2112.
    CrossRef  |  Direct Link  |  
  17. Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2013. Numerical modeling of 3-D flow on porous broad crested weirs. Applied Math. Model., 37: 9324-9337.
    CrossRef  |  Direct Link  |  
  18. Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2013. Estimation of dimension and time variation of local scour at short abutment. Int. J. River Basin Manage., 11: 121-135.
    CrossRef  |  Direct Link  |  
  19. Khan, M., H.M. Azamathulla, M. Tufail and A.A. Ghani, 2013. Bridge pier scour prediction by gene expression programming. Proc. ICE-Water Manage., 165: 481-493.
    CrossRef  |  Direct Link  |  
  20. Guven, A., A. Aytek and H.M. Azamathulla, 2013. A practical approach to formulate stage-discharge relationship in natural rivers. Neural Comput. Applic., 23: 873-880.
    CrossRef  |  Direct Link  |  
  21. Ghani, A.A. and H.M. Azamathulla, 2013. Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Comput. Applic., 24: 271-276.
    CrossRef  |  Direct Link  |  
  22. Dehghani, A.A., H.M. Azamathulla, S.F.H. Najafi and S.A. Ayyoubzadeh, 2013. Local scouring around L-head groynes. J. Hydrol., 504: 125-131.
    CrossRef  |  Direct Link  |  
  23. Azamathulla, H.M., Z. Ahmad and A.A. Ghani, 2013. Computation of discharge through side sluice gate using gene-expression programming. Irrig. Drain., 62: 115-119.
    CrossRef  |  Direct Link  |  
  24. Azamathulla, H.M., Z. Ahmad and A.A. Ghani, 2013. An expert system for predicting manning's roughness coefficient in open channels by using gene expression programming. Neural Comput. Applic., 23: 1343-1349.
    CrossRef  |  Direct Link  |  
  25. Azamathulla, H.M., C.C. Yong, A.A. Ghani and C.K. Chang, 2013. Suspended sediment load prediction of river systems: GEP approach. Arabian J. Geosci., 6: 3469-3480.
    CrossRef  |  Direct Link  |  
  26. Azamathulla, H.M., 2013. Gene-expression programming to predict friction factor for Southern Italian rivers. Neural Comput. Applic., 23: 1421-1426.
    CrossRef  |  Direct Link  |  
  27. Azamathulla, H.M., 2013. Comment on Evaluation of selected equations for predicting scour at downstream of ski-jump spillway using laboratory and field data by C. Kumar and P. Sreeja. Eng. Geol., 152: 210-211.
  28. Azamathulla, H.M. and Z. Ahmad, 2013. Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. J. Pipeline Syst. Eng. Pract., 4: 131-137.
    CrossRef  |  Direct Link  |  
  29. Azamathulla, H.M. and R.D. Jarrett, 2013. Use of gene-expression programming to estimate manning's roughness coefficient for high gradient streams. Water Resour. Manage., 27: 715-729.
    CrossRef  |  Direct Link  |  
  30. Azamathulla, H.M. and M.A.M. Yusoff, 2013. Soft computing for prediction of river pipeline scour depth. Neural Comput. Applic., 23: 2465-2469.
    CrossRef  |  Direct Link  |  
  31. Azamathulla, H.M. and A.A.M. Haque, 2013. Knowledge extraction from trained neural network scour model at culvert outlets. Neural Comput. Applic., 23: 2137-2141.
    CrossRef  |  Direct Link  |  
  32. Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2012. Prediction of equilibrium scour time around long abutments. Proc. ICE-Water Manage., 166: 394-401.
    CrossRef  |  Direct Link  |  
  33. Maghsoodi, R., M.S. Roozgar, H. Sarkardeh and H.M. Azamathulla, 2012. 3D-simulation of flow over submerged weirs. Int. J. Model. Simul., 32: 237-243.
    CrossRef  |  Direct Link  |  
  34. Khan, M., H.M. Azamathulla and M. Tufail, 2012. Gene-expression programming to predict Pier scour depth using Laboratory data. J. Hydroinformatics, 14: 628-645.
    CrossRef  |  Direct Link  |  
  35. Guven, A., H.M. Azamathulla and M. Gunal, 2012. Comparative study of predicting scour around a circular pile. Maritime Eng., 165: 31-40.
  36. Guven, A. and H.M. Azamathulla, 2012. Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol., 65: 1982-1987.
    CrossRef  |  Direct Link  |  
  37. Chang, C.K., H.M. Azamathulla, N.A. Zakaria and A.A. Ghani, 2012. Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers. J. Earth Syst. Sci., 121: 125-133.
    CrossRef  |  Direct Link  |  
  38. Azamathulla, H.M., A.A. Ghani and S.Y. Fei, 2012. ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Comput., 12: 1227-1230.
    CrossRef  |  Direct Link  |  
  39. Azamathulla, H.M., 2012. Gene-expression programming to predict scour at a bridge abutment. J. Hydroinformatics, 14: 324-331.
    CrossRef  |  Direct Link  |  
  40. Azamathulla, H.M., 2012. Gene expression programming for prediction of scour depth downstream of sills. J. Hydrol., 460-461: 169-172.
    CrossRef  |  Direct Link  |  
  41. Azamathulla, H.M., 2012. Comment on Reverse level pool routing: Comparison between a deterministic and a stochastic Approach by Marco D'Oria, Paolo Mignosa, Maria Giovanna Tanda. Journal of Hydrology, accepted for publication (27 July 2012); doi: http://dx. doi. org/10.1016/j. jhydrol. 2012.07. 045. J. Hydrol., 470-471: 328-328.
    CrossRef  |  Direct Link  |  
  42. Azamathulla, H.M. and Z. Ahmad, 2012. Gene-expression programming for transverse mixing coefficient. J. Hydrol., 434-435: 142-148.
    CrossRef  |  Direct Link  |  
  43. Azamathulla, H.M. and Z. Ahmad, 2012. GP approach for critical submergence of intakes in open channel flows. J. Hydroinformatics, 14: 937-943.
    CrossRef  |  Direct Link  |  
  44. Azamathulla, H.M. and M.A. Haque, 2012. Prediction of scour depth at culvert outlets using gene-expression programming. Int. J. Innov. Comput. Inform. Control, 8: 5045-5054.
  45. Azamathulla, H.M. and A. Zahiri, 2012. Flow discharge prediction in compound channels using linear genetic programming. J. Hydrol., 454-455: 203-207.
    CrossRef  |  Direct Link  |  
  46. Ahmad, Z. and H.M. Azamathulla, 2012. Response to comment on Quasi-theoretical end-depth-discharge relationship for trapezoidal channels. J. Hydrol., 477: 265-266.
    CrossRef  |  Direct Link  |  
  47. Ahmad, Z. and H.M. Azamathulla, 2012. Reply to the comments on: Direct solution for discharge in circular free overfall. J. Hydrol., 466-467: 446-447.
  48. Ahmad, Z. and H.M. Azamathulla, 2012. Quasi-theoretical end-depth-discharge relationship for trapezoidal channels. J. Hydrol., 456: 151-155.
    CrossRef  |  Direct Link  |  
  49. Ahmad, Z. and H.M. Azamathulla, 2012. Direct solution for discharge in circular free overfall. J. Hydrol., 446-447: 116-120.
    CrossRef  |  Direct Link  |  
  50. Hasan, Z.A., K.H. Lee, H.M. Azamathulla and A.A. Ghani, 2011. Flow simulation for lake Harapan using CCHE2D-a case study. Int. J. Model. Simulat., 31: 85-89.
    CrossRef  |  Direct Link  |  
  51. Ghani, A.A., H.M. Azamathulla, T.L. Lau, C.H. Ravikanth, N.A. Zakaria, C.S. Leow and M.A.M. Yusof, 2011. Flow pattern and hydraulic performance of the REDAC gross pollutant trap. Flow Measurement Instrum., 22: 215-224.
    CrossRef  |  Direct Link  |  
  52. Ghani, A.A., H.M. Azamathulla, C.K. Chang, N.A. Zakaria and Z.A. Hasan, 2011. Prediction of total bed material load for rivers in Malaysia: A case study of Langat, Muda and Kurau Rivers. Environ. Fluid Mech., 11: 307-318.
    CrossRef  |  Direct Link  |  
  53. Azamathulla, H.M., A.A. Ghani, C.S. Leow, C.K. Chang and N.A. Zakaria, 2011. Gene-expression programming for the development of a stage-discharge curve of the Pahang river. Water Resour. Manage., 25: 2901-2916.
    CrossRef  |  Direct Link  |  
  54. Azamathulla, H.M., A. Guven and Y.K. Demir, 2011. Linear genetic programming to scour below submerged pipeline. Ocean Eng., 38: 995-1000.
    CrossRef  |  Direct Link  |  
  55. Azamathulla, H.M. and N.A. Zakaria, 2011. Prediction of scour below submerged pipeline crossing a river using ANN. Water Sci. Technol., 63: 2225-2230.
    CrossRef  |  Direct Link  |  
  56. Azamathulla, H.M. and F.C. Wu, 2011. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Comput., 11: 2902-2905.
    CrossRef  |  Direct Link  |  
  57. Azamathulla, H.M. and A.A. Ghani, 2011. Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour. Manage., 25: 1537-1544.
    CrossRef  |  Direct Link  |  
  58. Ayoubloo, M.K., H.M. Azamathulla, Z. Ahmad, A.A. Ghani, J. Mahjoobi and A. Rasekh, 2011. Prediction of the scour depth below spillways applying different soft computing techniques. Comput. Applic., 33: 92-97.
    Direct Link  |  
  59. Ayoubloo, M.K., H.M. Azamathulla, E. Jabbari and J. Mahjoobi, 2011. Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows. Expert Syst. Applic., 38: 10114-10123.
  60. Ahmad, Z., H.M. Azamathulla and N.A. Zakaria, 2011. ANFIS-based approach for the estimation of transverse mixing coefficient. Water Sci. Technol., 63: 1005-1010.
    CrossRef  |  Direct Link  |  
  61. Zakaria, N.A., H.M. Azamathulla, C.K. Chang and A.A. Ghani, 2010. Gene expression programming for total bed material load estimation-a case study. Sci. Total Environ., 408: 5078-5085.
    CrossRef  |  Direct Link  |  
  62. Yazdi, J., H. Sarkardeh, H.M. Azamathulla and A.A. Ghani, 2010. 3D-Simulation of flow around single groyne with free surface. Int. J. River Basin Manage., 8: 55-62.
  63. Roshan, R., H.M. Azamathulla, M. Marosi, H. Sarkardeh, H. Pahlavan and A.A. Ghani, 2010. Hydraulics of stepped spillways with different numbers of steps. Dams Reservoirs, 20: 131-136.
    Direct Link  |  
  64. Khodashenas, S.R., R. Roshan, H. Sarkardeh and H.M. Azamathulla, 2010. Vortex study at orifice spillways of Karun III dam. Dam Eng., 21: 131-142.
  65. Ghani, A.A. and H.M. Azamathulla, 2010. Gene-expression programming for sediment transport in sewer pipe systems. J. Pipeline Syst. Eng. Pract., 2: 102-106.
    CrossRef  |  Direct Link  |  
  66. Azamathulla, H.M., A.A. Ghani, N.A. Zakaria and A. Guven, 2010. Genetic programming to predict bridge pier scour. J. Hydr. Eng., 136: 165-169.
    CrossRef  |  Direct Link  |  
  67. Azamathulla, H.M., A.A. Ghani, C.K. Chang, Z.A. Hasan and N.A. Zakaria, 2010. Machine learning approach to predict sediment load-a case study. Clean-Soil Air Water, 38: 969-976.
    CrossRef  |  Direct Link  |  
  68. Azamathulla, H.M., A.A. Ghani and N.A. Zakaria, 2010. Prediction of scour around hydraulic structure using soft computing technique. Malaysian J. Civil Eng., 22: 53-65.
    Direct Link  |  
  69. Azamathulla, H.M., A.A. Ghan, N.A. Zakaria, C.K. Chang and Z.A. Hassan, 2010. Genetic programming approach to predict sediment concentration for Malaysian rivers. Int. J. Ecol. Econ. Stat., 16: 53-64.
    Direct Link  |  
  70. Azamathulla, H.M. and N.A. Zakaria, 2010. Appraisals of soft computing techniques in prediction of spillway scour depth. Dam Eng., 21: 189-202.
  71. Azamathulla, H.M. and A.A. Ghani, 2010. Genetic programming to predict river pipeline J. Pipeline Syst. Eng. Pract., 1: 127-132.
    CrossRef  |  Direct Link  |  
  72. Azamathulla, H.M. and A.A. Ghani, 2010. ANFIS-based approach for predicting the scour depth at culvert outlet. J. Pipeline Syst. Eng. Pract., 2: 35-40.
    CrossRef  |  Direct Link  |  
  73. Guven, A., H.M. Azamathulla and N.A. Zakaria, 2009. Linear genetic programming for prediction of circular pile scour. Ocean Eng., 36: 985-991.
    CrossRef  |  Direct Link  |  
  74. Azamathulla, H.M., C.K. Chang, A.A. Ghani, J. Ariffin, N.A. Zakaria and Z.A. Hasan, 2009. An ANFIS-based approach for predicting the bed load for moderately sized rivers. J. Hydro-Environ. Res., 3: 35-44.
    CrossRef  |  Direct Link  |  
  75. Azamathulla, H.M., A.A. Ghani, N.A. Zakaria and A. Guven, 2009. Genetic programming to predict river pipeline scour. J. Hydr. Eng., 165: 1-5.
  76. Azamathulla, H.M., A.A. Ghani and N.A. Zakaria, 2009. ANFIS-based approach to predicting scour location of spillway. Water Manage., 162: 399-407.
    CrossRef  |  Direct Link  |  
  77. Azamathulla, H.M., M.C. Deo and P.B. Deolalikar, 2008. Alternative neural networks to estimate the scour below spillways. Adv. Eng. Software, 39: 689-698.
    CrossRef  |  Direct Link  |  
  78. Azamathulla, H.M., F.C. Wu, A.A. Ghani, S.M. Narulkar, N.A. Zakaria and C.K. Chang, 2008. Comparison between genetic algorithm and linear programming approach for real time operation. J. Hydro-Environ. Res., 2: 172-181.
    CrossRef  |  
  79. Azamathulla, H.M., A.A. Ghani, N.A. Zakaria, S.H. Lai, C.K. Chang, C.S. Leow and Z. Abuhasan, 2008. Genetic programming to predict ski-jump bucket spill-way scour. J. Hydrodynamics Ser. B, 20: 477-484.
    CrossRef  |  Direct Link  |  
  80. Azamathulla, H.M., A.A. Ghani, N.A. Zakaria, C.C. Kiat and L.C. Siang, 2008. Knowledge extraction from trained neural network scour models. Modern Applied Sci., 2: 52-62.
    Direct Link  |  
  81. Azamathulla, H.M., M.C. Deo and P.B. Deolalikar, 2006. Estimation of scour below spillways using neural networks. J. Hydr. Res., 44: 61-69.
    CrossRef  |  Direct Link  |  
  82. Azmathullah, H.Md., M.C. Deo and P.B. Deolalikar, 2005. Neural networks for estimation of scour downstream of a ski-jump bucket. J. Hydraulic. Eng., 131: 898-908.
    CrossRef  |  Direct Link  |  
  83. Azamathulla, H.M., M.C. Deo, M.R. Bhajantri and P.B. Deolalikar, 2004. Scour at the base of flip-bucket spillways. ISH J. Hydraulic Eng., 10: 121-129.
    CrossRef  |  Direct Link  |  
  84. Azamathulla, H.M. and S.N. Londhe, 2004. Discussion on Behaviour of non-linear flow and application of neural network in converging boundaries by P.R.M. Rao and N.B.P. Reddy. J. Hydraulic Eng., 10: 77-77.