Dr. Srinivasan  Alavandar

Dr. Srinivasan Alavandar

Professor and Dean
Agni College of Technology, India


Highest Degree
Ph.D. in Electronics and Computer Engineering from Indian Institute of Technology, India

Share this Profile

Area of Interest:

Computer Sciences
100%
Electronics
62%
Computer Engineering
90%
Computational Intelligence
75%
Control Systems
55%

Selected Publications

  1. Shajahan, B. and S. Alavandar, 2018. Congestion controller for best effort networks using fuzzy inference system. J. Comput. Theor. Nanosci., 15: 40-46.
    CrossRef  |  Direct Link  |  
  2. Priya, N.S., R. Sasikala, S. Alavandar and L. Bharathi, 2018. Security aware trusted cluster based routing protocol for wireless body sensor networks. Wireless Pers. Commun., 102: 3393-3411.
    CrossRef  |  Direct Link  |  
  3. Lakshmanan, B., S. Ramasamy and S. Alavandar, 2016. Adaptive burst assembly algorithm for reducing burst loss and delay in OBS networks. Asian J. Inf. Technol., 15: 2123-2132.
    CrossRef  |  Direct Link  |  
  4. Kumar, S. and A. Srinivasan, 2016. Control of robot manipulator error using fpdi–iqga in neural network. J. Comput. Theor. Nanosci., 13: 1740-1748.
    CrossRef  |  Direct Link  |  
  5. Kumar, A.T. and A. Srinivasan, 2016. GRNN based inertia parameters identification of robot dynamics. Adv. Nat. Appl. Sci., 16: 115-119.
    Direct Link  |  
  6. Patil, S.G., S. Mandal, A.V. Hegde and S. Alavandar, 2011. Neuro-Fuzzy Based Approach for Wave Transmission Prediction of Horizontally Interlaced Multilayer Moored Floating Pipe Breakwater. Ocean Eng., 38: 186-196.
    CrossRef  |  Direct Link  |  
  7. Jain, T., S. Alavandar, S.V. Radhamohan and M.J. Nigam, 2010. Genetically-Bacterial Swarm Optimization: Fuzzy Pre-Compensated Pd Control Of Two-Link Rigid-Flexible Manipulator. Int. J. Intell. Comput. Cybern., 3: 463-494.
    CrossRef  |  Direct Link  |  
  8. Jain, T., M.J. Nigam and S. Alavandar, 2010. A Hybrid Genetically-Bacterial Foraging Algorithm Converged by Particle Swarm Optimisation for Global Optimisation. Int. J. Bio-Inspired Comput., 2: 340-348.
    CrossRef  |  Direct Link  |  
  9. Alavandar, S., T. Jain and M.J. Nigam, 2010. Hybrid bacterial foraging and particle swarm optimisation for fuzzy precompensated control of flexible manipulator. Int. J. Automation Control, 40: 234-251.
    Direct Link  |  
  10. Alavandar, S., T. Jain and M.J. Nigam, 2009. Particle swarm optimized hybrid fuzzy precompensated trajectory control of rigid-flexible manipulator. Int. J. Knowledge-Based Intell. Eng. Syst., 13: 155-167.
    CrossRef  |  Direct Link  |  
  11. Alavandar, S., T. Jain and M.J. Nigam, 2009. Bacterial foraging optimized hybrid fuzzy precompensated pd control of two link rigid - flexible manipulator. Int. J. Comput. Intell. Syst., 2: 51-59.
    CrossRef  |  
  12. Alavandar, S. and M.J. Nigam, 2009. New hybrid adaptive neuro fuzzy algorithms for manipulator control with uncertainties -comparative study. ISA Transactions, 48: 497-502.
    CrossRef  |  
  13. Alavandar, S. and M.J. Nigam, 2009. Comparative analysis of conventional and soft computing based control strategies for robot manipulators with uncertainties. Int. J. Comput. Cognition,. 7: 52-61.
    Direct Link  |  
  14. Alavandar, S. and M.J. Nigam, 2008. Neuro-Fuzzy based approach for inverse kinematics solution of industrial robot manipulators. Int. J. Comput. Commun. Control, 3: 224-234.
    Direct Link  |  
  15. Alavandar, S. and M.J. Nigam, 2008. Fuzzy PD+I control of a six dof robot manipulator. Ind. Robot Int. J., 35: 125-132.
    CrossRef  |  Direct Link  |  
  16. Alavandar, S. and M.J. Nigam, 2008. Adaptive neuro-fuzzy inference system based control of six dof robot manipulator. J. Eng. Sci. Technol. Rev., 1: 106-111.
    Direct Link  |  
  17. Alavandar, S., K.A.V. Sundaram and M.J. Nigam, 2007. Genetic algorithm based robot massage. J. Theor. Applied Inform. Technol., 3: 102-109.
    Direct Link  |  
  18. Alavandar, S. and M.J. Nigam, 2007. Tracking control of 3-DOF robot manipulator using genetic algorithm tuned fuzzy PID controller. J. Theor. Applied Inform. Technol., 3: 15-24.