Dr. Deepak Kumar
My Social Links

Dr. Deepak Kumar

Manav Rachna International University, India

Highest Degree
Ph.D. in Mathematics from Dr. Bhim Rao Ambedkar Universty, India

Share this Profile


Dr. Deepak Kumar is currently working as Professor at Manav Rachna International University, India. He obtained his Master degree (JMI, New Delhi) and Ph.D. in Mathematics from Dr. Bhim Rao Ambedkar University, Agra, Uttar Pradesh, India.

Area of Interest:

Physical Science Engineering
Mathematical Modeling
Applied Mathematics
Numerical Analysis
Mathematical Applications

Research Publications in Numbers


Selected Publications

  1. Sandhya and D. Kumar, 2019. Model for gestational diabetes on web based parameters. Recent Patents Eng., 13: 48-54.
    CrossRef  |  Direct Link  |  
  2. Khurana, P., D. Kumar and S. Kumar, 2019. Research of fake news spreading through Whatsapp. Int. J. Innov. Technol. Exploring Eng., 8: 948-951.
    CrossRef  |  Direct Link  |  
  3. Khurana, P., D. Kumar and S. Kumar, 2019. A differential equation model for social networks using internet. FIRMS's Int. J. Math. Sci., 1: 24-30.
    Direct Link  |  
  4. Khurana, P. and D. Kumar, 2018. Application of matrix for hospital dietary services. Int. J. Scient. Eng. Applied Sci., 4: 84-90.
    Direct Link  |  
  5. Kumar, D., V. Kumar and P. Khurana, 2017. Mathematical Models on Communicable Diseases. Lambert Academic Publishers, Germany, ISBN: 978-3-659-59492-2, Pages: 112.
  6. Gupta, R. and D. Kumar, 2017. Numerical model for glucose metabolism for various types of food and effect of physical activities on type 1 diabetic patient. Applied Math., 7: 19-22.
    CrossRef  |  Direct Link  |  
  7. Gupta, R. and D. Kumar, 2017. Hypertension and coronary heart disease risks for a type II diabetic patient with or without intake of alcohol: A mathematical model. Adv. Sci. Eng. Med., 9: 709-712.
    CrossRef  |  Direct Link  |  
  8. Singh, S. and D. Kumar, 2016. Mathematical model on glucose-insulin regulatory system with the impact of physical activities. Comput. Math. Biol., 5: 5-8.
    Direct Link  |  
  9. Kumari, N. and D. Kumar, 2016. Students' perspective (stream wise) of parameters affecting the undergraduate engineering education: A live study. East Asian J. Bus. Manage., 6: 25-30.
    CrossRef  |  Direct Link  |  
  10. Kumar, D. and V.K. Bais, 2016. Mathematical model on influenza disease with re-susceptibility. Aust. J. Basic Applied Sci., 10: 177-182.
    Direct Link  |  
  11. Sandhya and D. Kumar, 2015. A statistical computation with the impact of physical activities for risk factor (BMI) in diabetes mellitus. Int. J. Eng. Technol. Manage. Applied Sci., 3: 376-379.
  12. Kumar, V. and D. Kumar, 2015. Some mathematical models for epidemiology. Int. J. Scient. Eng. Res., 6: 1055-1057.
    Direct Link  |  
  13. Gupta, R. and D. Kumar, 2015. Finding the important but neglected parameters in diabetes mellitus. Int. J. Comput. Math. Sci., 4: 120-123.
  14. Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2015. Mathematical modelling for chemotherapy of tumor growth with aspect of biological stoichiometry. Global J. Pure Applied Math., 4: 2581-2587.
  15. Bais, V.K. and D. Kumar, 2015. SITR dynamical model for influenza. Int. J. Eng. Technol. Sci. Res., 2: 76-79.
  16. Shekhar, K., A.P. Tyagi, A. Saxena and D. Kumar, 2014. Analysis of an exponential slider bearing under highly loaded conditions of human knee joint: Pure rolling case. Int. J. Applied Eng. Res., 9: 8543-8553.
  17. Kumari, N. and D. Kumar, 2014. Students' perspective of parameters affecting the quality of education in undergraduate engineering institution based on factor analysis/loadings. Entrepreneursh. Innov. Manage. J., 2: 8-21.
    Direct Link  |  
  18. Kumar, D., 2014. A mathematical model of chemotherapeutic drug for tumor treatment. Indian J. Applied Res., 4: 7-10.
    Direct Link  |  
  19. Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2014. Mathematical model solid tumor at the stage of angiogenesis with immune response. Int. J. Innovat. Sci. Eng. Technol., 1: 174-180.
    Direct Link  |  
  20. Kumar, D., 2013. Simple PDE model of ductal carcinoma in situ and vascularisation of nutrient. Adv. Applied Math. Biosci., 4: 69-79.
    Direct Link  |  
  21. Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2012. A mathematical model of chemotherapy for tumor treatment. Adv. Applied Math. Biosci., 3: 1-10.
    Direct Link  |  
  22. Sandhya, D. Kumar and P. Pandit, 2011. An ordinary differential equation model of diabetic population in New Delhi. Indian J. Math. Math. Sci., 7: 45-50.
  23. Sandhya and D. Kumar, 2011. Mathematical model for glucose-insulin regulatory system of diabetes mellitus. Adv. Applied Math. Biosci., 2: 39-46.
    Direct Link  |  
  24. Kant, S., S. Kumar and D. Kumar, 2011. A mathematical model of tumour growth with a specific dose of Il-4 (Interleukin-4). Math. Modell. Applied Comput., 2: 1-8.
  25. Kant, S., D. Kumar and S. Kumar, 2011. Mathematical model of homogeneous tumor with delay in time. Afr. J. Math. Comput. Sci. Res., 4: 201-207.
    Direct Link  |  
  26. Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2011. A mathematical model of vascular tumor with chemotherapy drug concentration at nano-scale. Int. J. Applied Math. Applic., 3: 77-83.
  27. Chand, P. and D. Kumar, 2011. Performance comparison of two on-demands routing protocols for mobile ad-hoc networks. Int. J. Adv. Eng. Technol., 1: 283-289.
    Direct Link  |  
  28. Kumar, D. and S. Kumar, 2010. A mathematical model of radio immunotherapy for tumor treatment. Afr. J. Math. Comput. Sci. Res., 3: 101-106.
    Direct Link  |  
  29. Kumar, S., S. Kumar and D. Kumar, 2009. Oscillatory MHD flow of blood through an artery with mild stenosis. IJE Trans. A: Basic, 22: 125-130.
    Direct Link  |  
  30. Kumar, S., R. Singh and D. Kumar, 2009. Mathematical model for the unsteady-state condition on oxygen diffusion through biological floc particles. Afr. J. Math. Comput. Sci. Res., 2: 215-219.
  31. Kumar, S., D. Kumar and R. Sharma, 2009. Mathematical Modelling for Tumor Growth and Control Strategies. In: Infectious Disease Modelling Research Progress, Tchuenche, J.M. and C. Chiyaka (Eds.). Chapter 8, Nova Science Publishers Inc., New York, USA, ISBN: 978-1-60741-347-9, pp: 229-251.
  32. Kumar, D., S. Kumar, A. Kumar and D. Dixit, 2008. A computational approach to study avascular tumor. Chintan-Iilm J. Sci., 1: 42-49.
  33. Kumar, S. and D. Kumar, 2006. A computational model for the interaction between cell density and immune response. Acta Ciencia Indica, 32: 549-554.
  34. Kumar, D. and S. Kumar, 2006. A mathematical model for the immune system competition-the effect of replication-competent virus dosages. Acta Ciencia Indica, 32: 543-548.
  35. Kumar, S. and D. Kumar, 2005. Mathematical modeling of the interaction between tumor cells and tissue cells. Proceedings of the National Conference on Frontiers in Applied and Computational Mathematics, March 4-5, 2005, School of Mathematics and Computer Applications, Thapar Institute of Engineering and Technology, Deemed University, Patiala, India, pp: 91-101.