Dr. Ghulam Mohammad
My Social Links

Dr. Ghulam Mohammad

Assistant Professor
King Saud University, Saudi Arabia


Highest Degree
Ph.D. in Biochemistry from Banaras Hindu University, India

Share this Profile

Biography

Ghulam Mohammad is research scientist in the Department of Ophthalmology, College of Medicine at the Wayne State University Detroit, MI 48201. He received a Ph.D. degree in biochemistry from the Banaras Hindu University, Varanasi, India and completed his postdoctoral fellowship from Kresge Eye Institute, Wayne State University, Detroit, MI, USA. Worked as an Assistant-Associate Professor in the Department of Ophthalmology at the King Saud University. Dr. Mohammad research on Matrix metalloproteinases and High-mobility group box-1 protein, in diabetic retinopathy has contributed very important information, necessary for a thorough understanding of the molecular causes of vision impairment in the early stages of diabetic retinopathy. He published almost 50 articles in peer reviewed journals. His major theme of research is to elucidate the biochemical and molecular mechanisms involve in the development and progression of diabetic retinopathy/ neuropathy. His research has been supported by National Plan for science, technology and innovation, "Twinning" program ( Bascom Palmer Eye Institute-KSU) and King Abdulaziz City for Science and Technology (KACST).

Area of Interest:

Biomedical Sciences
100%
Biochemistry
62%
Enzymology
90%
Molecular Biology
75%
Protein Chemistry
55%

Research Publications in Numbers

Books
0
Chapters
1
Articles
58
Abstracts
0

Selected Publications

  1. Mohammad, G., R. Radhakrishnan and R.A. Kowluru, 2019. Epigenetic modifications compromise mitochondrial dna quality control in the development of diabetic retinopathy. Investig. Ophthalmol. Visual Sci., 60: 3943-3951..
    CrossRef  |  Direct Link  |  
  2. Mohammad, G., G.M. Abdelaziz, M.M. Siddiquei, A. Ahmad, G. De Hertogh, and A.M. Abu El-Asrar, 2019. Cross-talk between sirtuin 1 and the proinflammatory mediator high-mobility group box-1 in the regulation of blood-retinal barrier breakdown in diabetic retinopathy. Curr. Eye Res., 10.1080/02713683.2019.1625406.
    CrossRef  |  Direct Link  |  
  3. Mohammad, G., A.J. Duraisamy, A. Kowluru and R.A. Kowluru, 2019. Functional regulation of an oxidative stress mediator, rac1, in diabetic retinopathy. Mol. Neurobiol., 10.1007/s12035-019-01696-5.
    CrossRef  |  Direct Link  |  
  4. Duraisamy, A.J., G. Mohammad and R.A. Kowluru, 2019. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochim. Biophys. Acta Mol. Basis Dis., 1865: 1617-1626.
    CrossRef  |  PubMed  |  Direct Link  |  
  5. Mohammad, G., S.H. Alrashed, A.L. Almater, M.M. Siddiquei, E.A. Abu, 2018. The POLY (ADP-Ribose) polymerase-1 inhibitor 1,5-isoquinolinediol attenuate diabetes-induced nadph oxidase-derived oxidative stress in retina. J. Ocul. Pharmacol. Ther., 34: 512-5220.
    CrossRef  |  PubMed  |  Direct Link  |  
  6. Mohammad, G., H.M. AlSharif, M.M. Siddiquei, A. Ahmad, K. Alam, E.A.M. Abu, 2018. Rho-Associated protein kinase-1 mediates the regulation of inflammatory markers in diabetic retina and in retinal müller cells. Ann. Clin. Lab. Sci., 48: 137-145.
    PubMed  |  Direct Link  |  
  7. El-Asrar, A.A.M., G. Mohammad, E. Allegaert, A. Ahmad and M.M. Siddiquei et al., 2018. Matrix metalloproteinase-14 is a biomarker of angiogenic activity in proliferative diabetic retinopathy. Mol. Vis., 18: 394-406.
    PubMed  |  Direct Link  |  
  8. El-Asrar, A.A.M., A. Ahmad, K. Alam, E. Bittoun and M.M. Siddiquei et al ., 2018. Unbalanced vitreous levels of osteoprotegerin, rankl, rank, and trail in proliferativediabetic retinopathy. Ocul. Immunol. Inflammation, 26: 1248-1260.
    CrossRef  |  Direct Link  |  
  9. Abu El-Asrar, A.M., A. Ahmad, E. Bittoun, M.M. Siddiquei and G. Mohammad et al., 2018. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy. Acta Ophthalmol., 96: e27-e37.
    CrossRef  |  Direct Link  |  
  10. Mohammad, G., D. Jomar, M.M. Siddiquei, K. Alam, E.A.M. Abu, 2017. High-mobility group box-1 protein mediates the regulation of signal transducer and activator of transcription-3 in the diabetic retina and in human retinal müller cells. Ophthalmic Res., 57: 150-160.
    CrossRef  |  PubMed  |  Direct Link  |  
  11. El-Asrar, A.A.M.,, A. Ahmad, K. Alam, E. Bittoun and M.M. Siddiquei, 2017. Association of 150-kDa oxygen-regulated protein with vascular endothelial growth factor in proliferative diabetic retinopathy. Acta Ophthalmol., 96: 640-667.
    CrossRef  |  Direct Link  |  
  12. El-Asrar, A.A.M., S. Struyf, G. Mohammad, M. Gouwy and P. Rytinx et al., 2017. Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabeticretinopathy. Ophthalmol. Vis. Sci., 58: 3189-3201.
    CrossRef  |  Direct Link  |  
  13. El-Asrar, A.A.M., K. Alam, M. Garcia-Ramirez, A. Ahmad and M.M. Siddiquei et al., 2017. Association of HMGB1 with oxidative stress markers and regulators in PDR. Mol. Vis., 5: 853-871.
    PubMed  |  Direct Link  |  
  14. Mohammad, G., 2016. High-Mobility Group Box-1 Protein a Potential Inflammatory Biomarker in Diabetic Retinopathy. In: Tech. Wang, Mu., (Ed.). Role of Biomarkers in Medicine, U.S.A., PP: 149-167.
    CrossRef  |  Direct Link  |  
  15. El-Asrar, A.A.M., K. Alam, M.M. Siddiquei, D.E.K. Van, G. Mohammad, G. Hertogh and G. Opdenakker, 2016. Myeloid-Related protein-14/mrp-14/s100a9/calgranulin b is associated with inflammation in proliferative diabetic retinopathy. Ocul. Immunol. Inflammation, 26: 615-624.
    CrossRef  |  PubMed  |  Direct Link  |  
  16. El-Asrar, A.A.M., K. Alam, M.I. Nawaz, G. Mohammad and D.E.K. Van, 2016. Upregulation of thrombin/matrix metalloproteinase-1/protease-activated receptor-1 chain in proliferative diabetic retinopathy. Curr. Eye Res., 41: 1590-1600.
    CrossRef  |  PubMed  |  Direct Link  |  
  17. El-Asrar, A.A.M., A. Ahmad, K. Alam, M.M. Siddiquei and G. Mohammad et al., 2016. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmol., 95: 697-704.
    CrossRef  |  PubMed  |  Direct Link  |  
  18. Abu El-Asrar, A.M., M.M. Siddiquei, M.I. Nawaz, G. de Hertogh and G. Mohammad et al., 2016. Coexpression of heparanase activity, cathepsin L, tissue factor, tissue factor pathway inhibitor and MMP-9 in proliferative diabetic retinopathy. Mol. Vision, 22: 424-435.
    PubMed  |  Direct Link  |  
  19. Veluthakal, R., B. Kumar, G. Mohammad, A. Kowluru and R.A. Kowluru, 2015. Tiam1-Rac1 axis promotes activation of p38 map kinase in the development of diabeticretinopathy: Evidence for a requisite role for protein palmitoylation. Cell Physiol. Biochem., 36: 208-220.
    CrossRef  |  PubMed  |  Direct Link  |  
  20. Nawaz, M.I. and G. Mohammad, 2015. Role of high-mobility group box-1 protein in disruption of vascular barriers and regulation of leukocyte-endothelial interactions. J. Recept. Signal Transduct. Res., 35: 340-345.
    CrossRef  |  PubMed  |  Direct Link  |  
  21. Mohammad, G., K. Alam, M.I. Nawaz, M.M. Siddiquei, A. Mousa, E.A.M. Abu, 2015. Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers. J. Physiol. Biochem., 71: 359-372.
    CrossRef  |  Direct Link  |  
  22. El-Asrar, A.A.M., M.I. Nawaz, H.G. De, A.S. Al-Kharashi, D.E.K. Van, G. Mohammad and K. Geboes, 2015. The angiogenic biomarker endocan is upregulated in proliferative diabetic retinopathy and correlates with vascular endothelial growth factor. Curr. Eye Res., 40: 321-331.
    CrossRef  |  PubMed  |  Direct Link  |  
  23. El-Asrar, A.A.M., K. Alam, M.I. Nawaz, G. Mohammad and D.E.K. Van et al., 2015. Upregulated expression of heparanase in the vitreous of patients with proliferative diabeticretinopathy originates from activated endothelial cells and leukocytes. Invest. Ophthalmol. Vis. Sci., 56: 8239-8247.
    CrossRef  |  PubMed  |  Direct Link  |  
  24. El-Asrar, A.A.M., G. Mohammad, M.I. Nawaz and M.M. Siddiquei, 2015. High-mobility group box-1 modulates the expression of inflammatory and angiogenic signaling pathways in diabetic retina. Curr. Eye Res., 40: 1141-1152.
    CrossRef  |  PubMed  |  Direct Link  |  
  25. El-Asrar, A.A.M., A. Ahmad, K. Alam, E. Bittoun and M.M. Siddiquei et al ., 2015. The tumor necrosis factor superfamily members TWEAK, TNFSF15 and fibroblast growth factor-inducible protein 14 are upregulated in proliferative diabetic retinopathy. Ophthalmic Res., 53: 122-130.
    CrossRef  |  PubMed  |  Direct Link  |  
  26. El-Asrar, A.A.M., A. Ahmad, K. Alam, E. Bittoun and M.M. Siddiquei et al ., 2015. The chemokine platelet factor-4 variant (PF-4var)/CXCL4L1 inhibits diabetes-induced blood-retinal barrier breakdown. Invest. Ophthalmol. Vis. Sci., 56: 1956-1964.
    CrossRef  |  PubMed  |  Direct Link  |  
  27. Santos, A.R.C., G. Dvoriantchikova, Y. Li, G. Mohammad, A.M. Abu El-Asrar, R. Wen and D. Ivanov, 2014. Cellular mechanisms of High Mobility Group 1 (HMGB-1) protein action in the diabetic retinopathy. PLoS ONE, Vol. 9. 10.1371/journal.pone.0087574.
    CrossRef  |  Direct Link  |  
  28. Mohammad, G., J. Vandooren, M.M. Siddiquei, E. Martens, E.A.M. Abu and G. Opdenakker, 2014. Functional links between gelatinase b/matrix metalloproteinase-9 and prominin-1/cd133 indiabetic retinal vasculopathy and neuropathy. Prog. Retin. Eye Res., 43: 76-91.
    CrossRef  |  PubMed  |  Direct Link  |  
  29. Kowluru, R.A., A. Kowluru, R. Veluthakal, G. Mohammad, I. Syed, J.M. Santos and M. Mishra, 2014. TIAM1–RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia, 57: 1047-1056.
    CrossRef  |  Direct Link  |  
  30. El-Asrar, A.A.M., M.I. Nawaz, G, Mohammad, M.M. Siddiquei, K. Alam, A. Mousa and G. Opdenakker, 2014. Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. Lipids Health Dis., 10.1186/1476-511X-13-187.
    CrossRef  |  Direct Link  |  
  31. Abu El-Asrar, A.M., M.M. Siddiquei, M.I. Nawaz, K. Geboes and G. Mohammad, 2014. The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediat. Inflamm., Vol. 2014. 10.1155/2014/746415.
    CrossRef  |  Direct Link  |  
  32. Abu El-Asrar, A.M., M.I. Nawaz, G. de Hertogh, K. Alam and M.M. Siddiquei et al., 2014. S100A4 is upregulated in proliferative diabetic retinopathy and correlates with markers of angiogenesis and fibrogenesis. Mol. Vision, 20: 1209-1224.
    PubMed  |  Direct Link  |  
  33. Nawaz, M.I., R.K. Van, G. Mohammad, D. Kangave, D.J. Van, E.A.M. Abu and S.Struyf , 2013. Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Exp. Eye Res., 109: 67-76.
    CrossRef  |  PubMed  |  Direct Link  |  
  34. Mohammad, G., M.M. Siddiquei, M.I. Nawaz and A.M. Abu El-Asrar, 2013. The inhibitor U0126 attenuates diabetes-induced upregulation of MMP-9 and biomarkers of inflammation in the retina. J. Diabetes Res., Vol. 2013. 10.1155/2013/658548.
    CrossRef  |  Direct Link  |  
  35. Mohammad, G., M.M. Siddiquei, A.M. Abu El-Asrar, 2013. Poly (ADP-ribose) polymerase mediates diabetes-induced retinal neuropathy. Mediat. Inflamm., Vol. 2013. 10.1155/2013/510451.
    CrossRef  |  Direct Link  |  
  36. Mohammad, G., M.M. Siddiquei, A. Othman, M. Al-Shabrawey and E.A.M. Abu, 2013. High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina. Exp. Eye Res., 107: 101-109.
    CrossRef  |  Direct Link  |  
  37. El-Asrar, A.A.M., G. Mohammad, M.I. Nawaz, M.M. Siddiquei, D. Kangave and G. Opdenakker, 2013. Expression of lysophosphatidic acid, autotaxin and acylglycerol kinase as biomarkers indiabetic retinopathy. Acta Diabetol., 50: 363-371.
    CrossRef  |  Direct Link  |  
  38. Abu El-Asrar, A.M., M.I. Nawaz, M.M. Siddiquei, A.S. Al-Kharashi, D. Kangave and G. Mohammad, 2013. High-mobility group box-1 induces decreased brain-derived neurotrophic factor-mediated neuroprotection in the diabetic retina. Mediat. Inflamm., Vol. 2013. 10.1155/2013/863036.
    CrossRef  |  Direct Link  |  
  39. Abu El-Asrar, A.M., G. Mohammad, M.I. Nawaz, M.M. Siddiquei and K. van den Eynde et al., 2013. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS ONE, Vol. 8. 10.1371/journal.pone.0085857.
    CrossRef  |  Direct Link  |  
  40. Abu El-Asrar, A.M., G. Mohammad, G. de Hertogh, M.I. Nawaz and K. van den Eynde et al., 2013. Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS ONE, Vol. 8. 10.1371/journal.pone.0065472.
    CrossRef  |  Direct Link  |  
  41. Abu El-Asrar, A.M., E. Midena, M. Al-Shabrawey and G. Mohammad, 2013. New developments in the pathophysiology and management of diabetic retinopathy. J. Diabetes Res., Vol. 2013. 10.1155/2013/424258.
    CrossRef  |  Direct Link  |  
  42. Mohammad, G. and R.A. Kowluru, 2012. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J. Cell. Physiol., 227: 1052-1061.
    CrossRef  |  Direct Link  |  
  43. Mohammad, G. and M.M. Siddiquei, 2012. Role of matrix metalloproteinase-2 and -9 in the development of diabetic retinopathy. J. Ocul. Biol. Dis. Infor., 5: 1-8.
    CrossRef  |  Direct Link  |  
  44. Abu El-Asrar, A.M., M.I. Nawaz, D. Kangave, M. Abouammoh and G. Mohammad, 2012. High-mobility group box-1 and endothelial cell angiogenic markers in the vitreous from patients with proliferative diabetic retinopathy. Mediat. Inflamm., Vol. 2012. 10.1155/2012/697489.
    CrossRef  |  Direct Link  |  
  45. Santos, J.M., G. Mohammad, Q. Zhong and R.A. Kowluru, 2011. Diabetic retinopathy, superoxide damage and antioxidant. Curr. Pharm. Biotechnol., 12: 352-361.
    PubMed  |  
  46. Mohammad, G. and R.A. Kowluru, 2011. The role of raf-1 kinase in diabetic retinopathy. Expert Opin. Ther. Targets, 15: 357-364.
    PubMed  |  
  47. Mohammad, G. and R.A. Kowluru, 2011. Novel role of mitochondrial matrix metalloproteinase-2 in the development of diabetic retinopathy. Invest Ophthalmol. Vis. Sci., 52: 3832-3841.
    Direct Link  |  
  48. Mohammad, G. and R.A. Kowluru, 2011. Diabetic retinopathy and signalling mechanism for activation of matrix metalloproteinases-9. J. Cell. Physiol., 10.1002/jcp.22822.
    CrossRef  |  PubMed  |  
  49. Kowluru, R.A., G. Mohammad, J.M. dos Santos and Q. Zhong, 2011. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage. Diabetes, 60: 3023-3033.
    CrossRef  |  Direct Link  |  
  50. Kowluru, R.A., G. Mohammad, J.M. Santos, S. Tewari and Q. Zhong, 2011. Interleukin-1β and mitochondria damage and the development of diabetic retinopathy. J. Ocular Biol. Dis. Inform., 4: 3-9.
    CrossRef  |  Direct Link  |  
  51. Mohammad, G. and R.A. Kowluru, 2010. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab. Invest., 90: 1365-1372.
    PubMed  |  
  52. Madsen-Bouterse, S.A., Q. Zhong, G. Mohammad, Y.S. Ho and R.A. Kowluru, 2010. Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic. Res., 44: 313-321.
    PubMed  |  
  53. Madsen-Bouterse, S.A., G. Mohammad, M. Kanwar and R. Kowluru, 2010. Role of mitochondrial DNA damage in the development of diabetic Retinopathy and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal, 13: 797-805.
    PubMed  |  
  54. Madsen-Bouterse, S., G. Mohammad and R.A. Kowluru, 2010. Glyceraldehyde 3 phosphate dehydrogease in retinal microvasculature: implication for the development and progression of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 51: 1765-1772.
    Direct Link  |  
  55. Mohammad, G., V. Vaibhav, H.P. Pandey, K. Tripathi and A.A. Msalati, 2009. Angiogenesis in granulation tissue of type 2 diabetes mellitus patients wound. Asian J. Exp. Sci., 23: 567-573.
  56. Mohammad, G., V.K. Mishra and H.P. Pandey, 2008. Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patients. Digest J. Nanomater. Biostruct., 3: 159-162.
    Direct Link  |  
  57. Mohammad, G., H.P. Pandey and K. Tripathi, 2008. Diabetic wound healing and it`s angiogenesis with special reference to nanoparticles. Digest J. Nanomaterials Biostructures, 3: 203-208.
    Direct Link  |  
  58. Mishra, V.K., G. Mohammad and S.K. Mishra, 2008. Down regulation of telomerase activity may enhanced by Nanoparticle mediated curcumin delivery. Digest J. Nanomaterials Biostructures, 3: 163-169.
    Direct Link  |  
  59. Mishra, V.K., G. Mohammad and A. Jha, 2008. Immunomodulation and anticancer potentials of Yogurt probiotic. Exp. Clin. Sci., 7: 177-184.
    Direct Link  |